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ABSTRACT

The traditional method for purity determination by analysis of the peak shape
of the melting transition has included fitting to a linear relation between sample
temperature (7)) and the reciprocal iraction molten (1/7). This technique, however,
necessitates the use of a series of calibrants to determine the proper choice of limits
for 1y as a function of purity. In this paper, a non-linear relation betwzen 7 and
1/7 is developed and applied tc the determination of metallic impurities in Pb in the
range of a few to 1000 parts per million. The results are found to be independent of the
range of 1fy used. The use of differential scanning calorimelry in this determination
is discussed, and rate effects are also mentioned.

INTRODUCTION

In the process of measuring the rate of Au diffusion in dilute lead (gold) alloys,
it became necessary to find an inexpensive method of determining the amount of Au
in the alloy. One cannot assume the concentrations to be the amount placed in the
melt because of segregation as the solidification zone moves across the specimen to
form a single crystal by the Bridgman technique. Because of the possible non-uniform
concentration, it is necessary to measure the concentration at several points along the
crystal making the expense of activation analysis prohibitive.

The nature of the melting curve of a pure material is considerably altered as
foreign atoms are added to the material. This change can be harnessed to give a
quantitative measure of the impurity concentration. One can focus on the shift of the
liquidous line with concentration or on the change in the shape of the melting signal
itself. For very dilute alloys, the melting temperature shifts are small, and the precision
with which one can determine the actual melting temperature is not good enough for
accurate determination. Thus we took the later approach. We briefly present the basic
theory and its assumptions followed by an analysis of the use of differential scanning
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calorimetry in making these measurements. Finally, we will present our results and
discuss advantages and limitations of this technique.

Differential scanning calorimetry (DSC) has been used in the past to determine
impurity concentrations!™>. Marti' gives a review of the literature on the DSC
method for purity determination. All these measurements were based on a linear
relation between the temperature and the reciprocal of the fraction of the sample
molten. 3.

T = To — (x2RT3/AH) (1/7) )

where T, is the melting temperature of the pure solvent, R the molar gas constant,
X, the concentraiion of the solute, and 4f; the heat of fusion of the pure solvent.
These earlier experimenters observed a strong effect of scan rate on their calculated
impurity concentrations. They also noted that 7(1/7) was not linear except for very
pure samples. The rate dependence was assumed to be caused by inability of the sample
to attain equilibrium at the faster scan rates. Driscol et al.3 assumed the non-linearity
of 7(1/7) was due to a portion of the melting peak area being missed before the signal
departed measurably from the baseline. They thus proposed a “linearization™ proce-
dure but then found their calculated impurity concentrations to depend strongly
upon the range of 17 used.

We do not use eqn (1) but derive a relation between 7 and 1y that is not linear.
The impurity concentrations will be shown to have much less rate dependence and
will be independent of the range of 1/ used in the analysis.

THEORY

In the limit of dilute solutions, the lowering of the melting point is given by®
d7/dx, = — RT?/AH, @)

where x; is the mole fraction of saturated solute in the liquid phase at temperature 7
and 4Hg is as defined above. From eqn (2), we see that the lowering of the melting
point depends only upon the solute concentration and not upon the nature of the
solute, at least for solutes that do not dissociate. This equation assumes that the solute
is insoluble in the solid phase. Lewis and Randall? have extended eqn (2) to inciude a
system with a finity solubility in the solid phase.

dTidx, = (k — 1)RT*fAH, 3)

where & is the distribution coefficient, or the ratio of the solubility in the solid to that
in the liquid phase at a given temperature. From the temperature dependence of %,
it is seen that, over a small range of temperature near T, k is constant®. The constancy
of k for dilute solutions is known as Nernst's law”. Integration of eqn (3) yields

T — T, = RT,Tx(k — 1)/4H, )
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Using the law of levers between the liquidous and solidous for an alloy with
solute mole fraction x,, one finds®

X = xaf/[k + {1 — k)] )

where 7 is the fraction molten at temperature 7. Substitution of (3) into (4) yields,
after rearranging,

T =Ty + &Tofy — (n + K)Tf7 (6)

In the above 51 = RTyx,/AHand k = kf(1 — k). Letting x = 1/7. we have an expres-
sion to which we can fit the data by linear least squares techniques.

T=A+ Bx + CTx %)

with A = T4, B = kTy,and C = — (11 + k). Note that eqn (7) is not a linear relation
between 7 and 1/y as was the former expression, eqn (1), even in the case of no solid
solubility.

ANALYSIS AND EXPERIMENTAL PROCEDURE

We shall briefly review how 7 and 7 are obtained from the DSC signal. In each
of the matched pans of the DSC are placed identical aluminum containers, one of
which contains the lead sample. The output signal from the DSC is the difference in
heat flow supplied to the two pans as :he pan temperatures are swept together at a
constant rate, T,,. In dvnamic thermal measurements such as these, thermal lag between
the aluminum containers and the pans is included through Newton’s Law which is
the thermal equivalent of Ohm's Law'°.

Tp - T = Ro(q + COTp) (S)

Here 7 is the pan temperature, 7T the sample temperature, ¢ the DSC signal above
the instrumental baseline (see Fig. 1), C, the specific heat of the sample and its con-
tainer, and R, the thermal resistance to heat flow from the pan to the container. By
conservation of energy during the process of melting the sample, we have

g, =h + CoTand ¢, = (Co — C)T, )

where ¢, is the power dissipated i1 the pan containing the sample and ¢, is that in

the other pan. £ is the rate ot which heat is used in melting the sample, and C; is the

specific heat of the sample. In the baseline region §; — ¢, = C, T, because T = T,

and A = 0. The signal above the instrumental baseline during melting is

gq=4qy — qg> — Csj; =h + CO(T— Tp) (10)
The DSC melting signal for a pure sample as a function of t:me should appear

as shown in Fig. 1a. Melting begins at point B. During melting T = 0, and the signal

rises at a constant slope § = 7,/R, which is obtained by differentiating eqn (8) while
remembering that ’I"P and T are constant. At point C melting is complete, and the
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Fig 1. DSC signal, g(r). vs. time while sweeping temperature at a constant rate Tp for (2) ideal
pure sample, and (b) impure sample. R, is the thermal resistance between the sample container and
the sample pan, Co the specific heat of the sample and its container, and 7, the time at which the
sample has completed melting. T is the pan temperature, 7 the sample temperature, and Ty and 7y
the initial and final temperatures used in fitting the instrumental baseline.

signal decays with a time constant 1, = RoC, as T catches up with T,,. This follows
directly from differentiating eqn (8) in this region and substituting from eqn (10) for
T — T, with A = 0. Thus, in principle, one cculd determine R, and 7, from the rising
slope and the decay constant of the melting curve of a pure material.

Figure 1b shows a2 DSC melting curve for an impure sample. The instrumental
baseline is assumed to be straight, but not necessarily horizontal. It is determined by
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a least-squares fit to a section of the signal immediately following 7; and another
section following 7;. The instrumental baseline is subtracted off the data to give the
values of §(t). g(t) = [:4(f)dt is also calculated for each point. From egn (8), the

sample temperature is
T@) = T; + Tt — Rog(t) — 707, an

The latent heat L = ¢(t,), which is the total area in the melting signal above the
instrumental baseline!!. At time #, the fraction molten is the area ABCDFA divided
by the latent heat. The fraction molten at time 7 is

/1) = [4(r) + 7oq()}/L 12

where 7,4(r) is the area ABEF since AB = C,T, and g(t)/BE = T_/R,, the siope of
line BD.

Equations (I11) and (12) give T and 1/7 from the data provided we know R,
and 7,. For the pure sample, these constants are easily determined, but for the impure
melting curve, the analysis is not as straightforward. It has been suggested that one
determine R, from a separate measurement on a pure sample at the same heating
rate and sensitivity. However, we found this unsatisfactory for our purposes. Firstly,
because one can accurately measure very pure samples only at a very slow rate and not
at the rate used for more impure samples, and secondly, it is difficult to exchange
samples in the DSC without altering the thermal flow slightly. However, we can
determine 7, from the data. Let ¢, be the time at which 7 = 1. From eqn (12)

7o = [L — q(1)}/4(t.) (13)

where 7, is obtained from the position of the melting peak. For a given value of R,,
we czlculate T(z) and 1/%(¢) for several points in the melting region. These are fit to
eqn (7) by linear least squares techniques giving values for 4, B, C, and 72 = X,
[T() — A — Bf:(t) — CT(£)/+(1)]1>. All points with 1.1 < 1f7 < 50 are used in the
fit. R, is then varied until the value of y? is minimized, and thus the “best™ 4, B, and
C are determined from which 7y, &, and x? are calculated. The data and final fit are
plotted as in Fig. 3.

We also determine the uncertainty in x, due to the scatter of the data from the
theoretical expression. In the process of varying R, we calculate a range of R,
over which y? is not significantly altered, 65,, and 2 numerical value for dx,/dR,.
Then

o2, = (dxz/dRo)* o}, (14)

We wish to emphasize, however, that this does not completely include the uncertainty
due to the determination of 7, and the uncertainty due to errors in the baseline deter-
mination.

The samples were made from 99.9999 % pure Pb with small additions of Ag,
Au, Pt, or Pd. They were single microtome slices of 20 um thickness and approximately
2 mg mass. They were contained in standard flat aluminum capsules supplied by
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Fig 2. DSC signal vs. pan temperature for several impuritics given in parts per million.
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Perkin-Elmer. A slow steady flow of pure N, gas through the head was provided on
every run, and the heads were cooled with a heat sink kept at a constant temperature
of 9.7°C. Temperatures were increased through the melting region at the constant
rate T, which was selected in 2 range from 0.31 deg min~ ! t0 20 deg min— .
The data were collected and stored by an HP 9810 calculator and analyzed as
discussed above with the same calculator. Inputs to the calculator were sample mass,
T:, Ty, T, sensitivity, and a temperature at which the first data point is taken. The
calculator was manually started at 7;. The DSC signal was sampled four times per
second thereafter and the integrated heat caiculated. Periodically, after a selected
number of such steps, a point was chosen to use in the fit. A maximum of only 39
such data points could be stored in addition to a point at /,,.

RESULTS

The basic data is the melting curve. In Fig. 2, we display curves of DSC signal
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Fig 3. Sample temperature vs. (fraction molten)! for three impurities. The curves are the least
squares fits 1o the plotted data points.
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Fig. 4. The time constant To (sec) vs. 1775 for two differeni sets of data on Pb(Au)alloy:
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Fig. 5. Ratc dependence of the calculated impurity concentration of Ag and Au in Pb.
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TABLE 1

COMPARISON OF DSC AND ACTIVATION ANALYSIS MEASUREMENTS OF DILUTE GOLD IMPURITV CONCENTRA-~
TIONS INX LEAD

Calib 1 Calib 2 Calib 3

x2 (ppm)
DSC 147 = 18 1930 = 160 19.5 =906
Act. anal. 143 2970 179
k(9D 24 =1 152 15=03
Ro {(sec K mcal—1) 042 7+L4 o
7o (sec) 57 52 28
L(calg™?) 421 294 5.33

versus pan temperature for three lead samples. The effect of impurities in the lead
on the shape of the melting curve is obvious. After analyzing these curves, the data
were graphed as sample temperatures versus the reciprocal of the fraction molten as
shown in Fig. 3. Again, one can immediately see the effect of impurity concentration
on these curves. The lines indicate the best fit of eqn (7) to the data. The intercept at
1/y = 0is the melting temperature of pure Pb. The curves cross 1fy = 1 at the melting
temperature of the alloy. The initial slope at 1/y = 0 gives the solute concentration,
and the distribution coefficient is related to the curvature.

The value of R,, the thermal resistance between the pan and the sample,
ranged between 0.20 and 0.25 (sec K mcal™!) for samples containing less than 300
ppm. Above this, the value of R, increased with concentration to about 0.5 for
900 ppm impurity concentration and became very large if the concentration exceeded
the solid saturation solubility at the eutectic temperature. 79 = CyRj varied with the
sweep rate as shown in Fig. 4. This is likely due to the flow of N, gas which had to be
heated and thus contributed to the heat capacity.

Shown in Fig. 5 is the effect of sweep rate on the calculated value of x, for both
Au and Ag impurities in Pb. It is observed that there is little effect of sweep rate on the
calculated Au concentration for 0.5 < T, < 5 deg min~'. The Ag measurement
does show rate effects for 7, > 1 deg min~!. The measurements at 0.3 and 0.6 deg
min~ ! are mysterious but may not relate to a physical property of the sample.

Three samples of dilute Pb(Au) alloys were prepared and sent to General
Activation Analysis, Inc. for activation analysis of the concentration of Au in each.
A microtome slice of each of these was measured by the DSC melting technique. The
results are shown in Table 1. A “pure” lead sample gives an impurity concentration
of 2 + 1 ppm which is consistent with its being 99.9999%; pure. .

DISCUSSION

This method of measuring concentrations of metallic impurities in nearly pure
lead- is relatively rapid, reproducible, and accurate for concentrations-in the range
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from a few ppm to about 1000 ppm, or the maximum solid solubility, whichever is
lowest. The samples need be only 2 mg in size making possible the measurement of
spatial variation in the concentration. This technique does not distinguish one
impurity from another and may not give an accurate measure of total impurity
concentrations if there are many different impurity atoms involved. The minimum
measurable concentration is limited by the sensitivity of this method in detecting a
change in the shape of the melting curve, but the upper limit is set by breakdown of
the theory, if the concentration is above the maximum solubility at the eutectic or by
inability to obtain a linear baseline over the large range of temperatures involved in the
melting curve. The calibration sample No. 2 cor.tained more Au than is soluble at the
eutectic (1160 ppm); thus we could not measure it by this technique. In order to check
the reliability of higher concentration measurements, we dissolved 852 ppm Au in a
Pb rod and measured the concentration at some 8 points along the rod to get an
average concentration of 368 + 30 ppm in good agreement with the amount introduced.

The values of the distribution coefficient & are all qualitatively correct, for they
are very similar to the distribution coefficient at the eutectic. One of the principal
uncertainties in this interpretation of the melting signal is the large calculated vanation
of k& with x,. Thurmond and Struthers® show k to vary monotonically with tempera-
ture between the eutectic and the melting point. In our case, the value of k as seen
in Table 1 seems to approach zero at 7, and to increase too rapidly as T is lowered,
to extrapolate to the correct result at the eutectic.

The effects of sweep rate upon the calculated x, probably reflects equilibrium
effects. As the alloy melts, the concentration in the remaining solid should decrease,
because the solubility of the solute in the liquid is greater than that in the solid. In
order to maintain equilibrium, the solute must diffuse out of the solid. The rate that
the new equilibrium can be attained is dependent upon the diffusion constant of the
solute in the Pb. We have made DSC measurements for dilute Pt, Pd, An, and Ag
alloys of Pb. For Pt, Au, and Pd, the diffusion constant is in the order of 10% cm?
sec™ !, and these impurities all give a value of x, which is constant for '1"',, < S5deg
min~ . The diffusion rate of Ag, on the other hand, is an order of magnitude slower,
and thus the values of x, should be constant for a sweep rate 1/,710 of the 5 deg min™*
found above. We cannot check this prediction directly because of what appears to be
instrumental problems at the two lowest sweep rates. As is observed in Fig. 5, there is
a sudden increase in x, at these two slowest rates. We believe they are instrumental,
because the magnitude of the sudden increase depends upon the particular heads used
with the DSC, and we can think of no sample-related explanation for this effect.
Values of x, measured for Pb(Ag) alloys at 1.25 deg min~? do agree very weli with
the weighed amount of Ag placed in Pb samples and quenched from the melt to avoid
segregation problems.

It is concluded that the “linearization™ procedure is not the correct way to
analyze melting curves for impurity measurements. The procedure here not only
gives results that fit the theoretical expression very well, but the results for x, do not
depend upon the range of 1/7 used. This range has to be arbitranly chosen in the
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“lineanization™ approach, and x, varies by more than an crder of magnitude for
differeat regions of 17 between 2 and 50. We chose the entire range 1.1 < 17 < 50.
We have also taken successful measurements with 1.1 < 1fy < 100. Therefore, we
do not need a set of standards to select a range of 1/yasin the “linearization® approach.

If we divide 7, in Fig. 4 by R,, we get the specific heat versus 1/7,. This specific
heat originates from the heat capacity of the lead and iis 2luminum container and of
the N, gas that flows through the heads of the DSC. The latter term should appear
as C_R T, where C, is the specific heat of the gas with a flow rate R,. This explains
the linear dependence of 7o on 1/T,. The intercept at 1/T, = 0 is CoR,- For these
samples R, = 0.3 sec K mcal™ ', so we get C, = 5.8 mcal deg™!. We compare this
to 5.6 mcal deg™ ! for the 26.2 mg of Al and 0.1 mcal deg™ ! for the 3 mg of Pb and
find the agreement very good. We thus conclude that our method of determining 7,
and R, from the melting curve is justified.
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